手机浏览器扫描二维码访问
基于聚类的离散化假设我们有一个包含1000个房屋的价格数据的数据集,我们想将价格分成5个簇,以下是离散化方法:首先,随机分配5个中心点。根据每个房屋的价格和这5个中心点的距离,将每个房屋分入距离最近的中心点对应的簇中。重新计算每个簇的中心点,以中心点的坐标作为新的中心点。重复步骤2和步骤3,直到中心点的移动小于某个阈值或达到最大迭代次数。最终得到的5个簇即为我们需要的离散化结果。自适应离散化假设我们有一个包含个商品销售量数据的数据集,我们想将销售量离散化成n个区间,以下是离散化方法:先将所有商品销售量根据大小排序。初始时,将数据集分成n个区间,每个区间保持相等的数据数量。计算每个区间的范围(最小值和最大值),并计算相邻区间的范围的中点,这些中点作为新的分割点。根据新的分割点重新划分区间,如果新的区间与原来的区间相同,则算法停止。否则,重复步骤3和步骤4。最终得到的n个区间即为我们需要的离散化结果。卷积核输出形状卷积神经网络中的卷积层的输出维度计算,可以通过以下公式得出:输出的高度=(输入的高度-卷积核的高度+2*padding)步长+1输出的宽度=(输入的宽度-卷积核的宽度+2*padding)步长+1输出的深度=卷积核的数量这里,padding是指在输入数据周围填充的0的行数或列数(在计算输出大小时有助于保持空间尺寸不变),步长是指卷积核移动的步数。输出的深度直接取决于我们使用的卷积核的数量。输入数据大小为32x32大小单通道图片,在C1卷积层使用6个大小为5x5的卷识核进行卷积,padding=0,步长为1通过6个大小为5x5的卷识核之后的输出是多大尺寸的,怎么用公式计算给定:输入的高度H=32;输入的宽度W=32;卷积核的高度KH=5;卷积核的宽度KW=5;卷积核的数量K=6;步长S=1;PaddingP=0根据上述公式,我们可以计算出卷积后的输出尺寸:输出的高度=(H-KH+2P)S+1=(32-5+2*0)1+1=28输出的宽度=(W-KW+2P)S+1=(32-5+2*0)1+1=28输出的深度=K=6所以,通过6个大小为5x5的卷积核后的输出尺寸为28x28x6。
留出法(HoldoutMethod):基本思想:将原始数据集划分为训练集和测试集两部分,其中训练集用于模型训练,而测试集则用于评估模型的性能。实施步骤:根据比例或固定的样本数量,随机选择一部分数据作为训练集,剩余部分用作测试集。优点:简单快速;适用于大规模数据集。缺点:可能由于训练集和测试集的不同导致结果的方差较高;对于小样本数据集,留出的测试集可能不够代表性。2交叉验证法(Cross-Validation):基本思想:将原始数据集划分为K个大小相等的子集(折),其中K-1个子集用于训练模型,剩下的1个子集用于测试模型,这个过程轮流进行K次,最后将K次实验的结果综合得到最终的评估结果。实施步骤:将数据集随机划分为K个子集,依次选择每个子集作为验证集,其余子集作为训练集,训练模型并评估性能。重复这个过程K次,取K次实验的平均值作为模型的性能指标。优点:更充分利用了数据;可以减小因样本划分不同而引起的方差。缺点:增加了计算开销;在某些情况下,对于特定划分方式可能导致估计偏差。3自助采样法(Bootstrapping):基本思想:使用自助法从原始数据集中有放回地进行有偏复制采样,得到一个与原始数据集大小相等的采样集,再利用采样集进行模型训练和测试。实施步骤:从原始数据集中有放回地抽取样本,形成一个新的采样集,然后使用采样集进行模型训练和测试。优点:适用于小样本数据集,可以提供更多信息;避免了留出法和交叉验证法中由于划分过程引入的变化。缺点:采样集中约有36.8%的样本未被采到,这些未被采到样本也会对模型性能的评估产生影响;引入了自助抽样的随机性。拓展:选择何种数据集划分方法应根据以下因素进行综合考虑:1数据集大小:当数据集较大时,留出法能够提供足够的训练样本和测试样本,而且计算开销相对较小。当数据集较小时,交叉验证法和自助采样法能更好地利用数据。
这章没有结束,请点击下一页继续阅读!
2计算资源和时间限制:交叉验证需要多次训练模型并评估性能,所以会增加计算开销;自助采样法则需要从原始数据集中进行有放回的采样,可能导致计算成本上升。如果计算资源和时间有限,留出法可能是更可行的选择。3数据集特点:如果数据集具有一定的时序性,建议使用留出法或时间窗口交叉验证,确保训练集和测试集在时间上是连续的。如果数据集中存在明显的类别不平衡问题,可以考虑使用分层抽样的交叉验证来保持类别比例的一致性。4评估结果稳定性要求:交叉验证可以提供多个实验的平均结果,从而减少由于随机划分带来的方差。如果对评估结果的稳定性要求较高,交叉验证是一个不错的选择。总而言之,没有一种数据集划分方法适用于所有情况。选择合适的方法应根据具体问题的需求、数据集的大小以及可用的资源和时间来进行综合考虑,并在实践中进行实验比较以找到最佳的划分方式。2、请列举模型效果评估中准确性、稳定性和可解释性的指标。1准确性:准确率(Accuracy):预测正确的样本数量与总样本数量的比例。精确率(Precision):预测为正类的样本中,真实为正类的比例。召回率(Recall):真实为正类的样本中,被模型预测为正类的比例。F1值(F1-Score):综合考虑了精确率和召回率的调和平均,适用于评价二分类模型的性能。2稳定性:方差(Variance):指模型在不同数据集上性能的波动程度,方差越大说明模型的稳定性越低。交叉验证(CrossValidation):通过将数据集划分为多个子集,在每个子集上训练和评估模型,然后对结果进行平均,可以提供模型性能的稳定估计。3可解释性:特征重要性(FeatureImportance):用于衡量特征对模型预测结果的贡献程度,常用的方法包括基于树模型的特征重要性(如GiniImportance和PermutationImportance)以及线性模型的系数。4可视化(Visualization):通过可视化模型的结构、权重或决策边界等,帮助解释模型的预测过程和影响因素。5SHAP值(SHapleyAdditiveexPlanations):一种用于解释特征对预测结果的贡献度的方法,提供了每个特征对最终预测结果的影响大小。这些指标能够在评估模型效果时提供关于准确性、稳定性和可解释性的信息,但具体选择哪些指标要根据具体任务和需求进行综合考虑。
喜欢离语请大家收藏:()离语
强撩!暗哄!我怀了全球首富的崽 闪婚后偏执大佬每天狂宠我 仙道衍 盗墓:开局让吴二白暴揍黑瞎子 资深颜控闯荡娱乐圈 最强赛亚人传说 将军公主 扮演岩王帝君多年后,我穿回来了 退婚当天,三崽带我闪婚千亿隐富 爸爸,求你,不要打我了 快穿:尤物穿成万人嫌工具人女配 天灾末世小人物囤货带美女跑路了 女魔头只想攻略她师叔 生子就变强,我一年365胎 我与十位,美女总裁的故事 抗战之烽火特勤组 爱上她的理由 兽世重生,情敌太多狼夫哭唧唧 西游之白话版 白昼独行
为了躲避一个美女疯狂的纠缠,叶权宇在好友的帮助下偷偷来到日本,光荣地成为了圣樱花女子高中的第一名男学生,原本只想平静读完高中的他,面对一群萌萌的少女,生活又怎么可能平静得了?交流群号2746792欢迎大家前来交流吐槽!...
吕诚,十五岁之前一直没能修炼出内劲,只能当杂役。但他从小喜欢夜视星空,十年时间,让他的眉心处出现别人所没有的感应力,能让他感知周围的一切事务,并且修炼出内劲,踏入武者行列。从此,这个普通的杂役进阶为天才武者。学心法,进展神速练武技,无师能自通易容变声,惟妙惟肖。在这个武者为尊的世界,最终一步步成为睥睨天下的至尊...
这是一条成魔之道ltBRgt杨小天既然走上了这样的一条道路ltBRgt就决不回头ltBRgt不论前途怎么样ltBRgt都要面对它ltBRgt他一定要成为至尊ltBRgt武林的至尊ltBRgt江湖的至尊天下的至尊ltBRgt成王败寇ltBRgt成功了ltBRgt他就是名传千古的霸主失败了他就是遗臭万年的恶魔...
吃货林思念重生到了八零年,面对这桩谋算来的婚姻,男人的冷漠,她却像打了鸡血似的,誓要把男主拿下。男人的冷漠与误会让她终于有了离开的想法,可军婚不好离,她不信邪的为离婚奋斗着。可这冷漠的男人从什么时候起,紧紧的追着她的脚步,还恬不知耻的要和她生儿子。呸,谁要和你生儿子?你有儿子了好不好,要生也是生一个像她一样漂亮可爱...
穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...
他是绝世炼丹天才,因生来不能修炼武道,遭到自己最亲近的女人背叛杀害,转世重生于一个被人欺凌的废材少年身上。废材?天才?笑话,这万界内没人比他杨辰更了解培养天才!武道?丹道?双修又有何难!成就妖孽之道一路逆袭!极我逸才铸神体,荡尽不平!以我璀华炼仙丹,万界颤抖!...